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SUMMARY

The conventional antipodally symmetric Bingham matrix distribution

on the Stiefel manifold is generalised. Large sample maximum likelihood

estimation and uniformity tests are discussed, and a parametric model

for axial orientations (X-shapes) is suggested. A generalisation of the

4Khatri-Mardia matrix distribution is developed to provide a model suitable

for hybrids (T-shapes). Beran's results on exponential models for direc-

tional data are extended to orientation statistics to provide regression

estimators and goodness-of-fit tests as alternatives to maximum likeli-

hood estimation and likelihood ratio tests.
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1. Introduction

Following Downs (1972). we define an orientation statistic as a

rigid m-fra-- in 9 (W<_p) i.e. an mxp matrix X st. XX' C 

where C is an uxm syunetric positive definite matrix specifying the

angles between the rows of X . Without loss of generality we suppose

C-l since all methodology for C-1. can be extended trivially for

general C . We define an L-shape to be a rigid m-frame of signed

directions (a conventional orientation statistic), an X-shape to be a

rigid m-frame of axes, and a T-shape to be a hybrid, an r-frame of m,

axes and m2 -m-m, signed directions in Rp . All methodology so far

published is suitable for L-shapes. We a sum that p!_.3 since when

p-2 every type of orientation statistic reduces to either a direction

or an axis an the circle.

The von Rises-Fisher matrix distribution provides a suitable unimodal

pdf. for orintation statistics. Nmiimn likelihood estimates and likelihood

ratio tests have been developed by Doas (1972), shatri and Hardia (1977)

and Jupp and ardia (1979). The convetional fully paraeteri sd Bingham

matrix distribution (Xiatri nd raia, 1977, (7.2) with 8 -0 ) is the

obvious analogue on the StLefel miel6od of iagham's antLpodally symnetric

distribution an the sphere (3*in, 1974). Maxim likelihood estimation

and tests of randasuess against a special ease of this distribution have

been treated by Jp and Naza (1979) and INrdia and Kat-i (1977). in

Section 2 ve state the cresponding 1at remits tor the ftlly .-. sed

- modali mtrix . We ezd these resu3r, ,-o .

generalisation of the Binghai matrix distribution in Section 3. and obtaip

a nw 'Dngham' statistic as a large saple test of unifomLiy against.

general antipodally sym-etric alternatives, a large sasple approim.atiof

to the likelibood ratio statistic. In Section 4 a specim am of ths

.4
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distribution is suggested as a suitable modal for X-shapes, and an axial

Dinghas statistic Is obtained for a test of mifotmuty. The generalised

Xhatri-ftardia matrix distribution s used in Section 5 to provide a

suitable p ametric model for T-shapes and a hybrid Rayleigh-K gam

2 statistic is obtained as a large sample test of vfmifozmity. Reman's

results an rotatiomally invriant expmential models for directional

data ae extended to the Mtiefel manifold in Sect on 6, to provide

regression estiats and goodness of fit tests within the generalised

Xsatri-4.rdIa Lesily of distributions, as alternatives to the

ooqputaftonaIly i--vwtn mimum likelihood estimators and likelihood

* I1
ratio tests.

2. 1% HO matri distribution

Xf X is am wq matrix randm variable (al5p) with pdf

bere K is we symmetric positive definite, and V is p symetric

positive definite,, the if u- #, . an "e matrix of seres, the pdf

of I . conditional on ]a' -XI is (lhatrL and Mardia, 1977, (7.2))

etr(-ym1 1I-IMMCX') dXJ (2.2)

where IX] denotes the unifcr distribution on the StLefel manifold

0 (Nop) # and y -y(CO0V) is a nozmalisinq constant which depends only

upon the diagonal matrices Ol, % of eiqenvalues of K and V.

Series expeiLsons for e+ y * a hypergeoantric fuancton of two matrix

argum,,Wn have been given by Sriv stava and Carter (1960). for reasons

which will be-- apparent, we denote the distribution (2.2) a(ZoapKOV).

its Paramter sac has dimension (o.l) +*.) - 2 when 1 urpl , since

DJ(mrp, GOX) s (a"1 V+fZ )) -i(XMpKOV) for all ree scalars sGoo

(of. Iong,, 1974, 1ams 2.1). Sladlerl, when mop

S(Iepepe (49+53LZ,) (ar V Y+619 )) 3 ,p~pP XK ) 0 WheWe WIthout lase of
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generality we may assume trace(K-V) -0 so that the parareter space has

dimension 2r.") -3 . Where covenient to identify parameters uniquely

w shall assum that IV a0 (and k -o0 if ui- P), at, if dealing
PIV PP

in spectral decompositions# that the entries in -) and Dv are

in decreasing order with ( ) -0 (and (Dx) a -0 if u-). We

assume that the elments of Dr and v  axe distit so that K has a

'unique matrix Q a Om'.n) of eigenvectors and V has a coresponding

matrix 0 co(p-l, p) . Frm Theobald (1975, Theorem 1), the distribution

(2.2) has 2 ' mode at the points X Q'N1 , where N s the *6 xP

matrix of the first a* vooLn(omp-l) aolums of N. The multiplicity

arlses from the possible sign changes of the colums of Q and M-

I am grateftg to Or Theobald for first drawing my attention to this.

- SWIG h Z2# an O(mpp) from the distribution

* (2.2) hes lo" likellho

- 5 trace(KSv)T (2.3)

whee1 R OZ #i lcijq~ * ja#m -kt-p. The
$.-I L I.7,q

distct elemat of T , excluding weoe for which (ML) = (pop)

(wed also those f r vhLch (jq) a (pp) wben s-p) are sufficient but

jot niaeany ufficiant uless a a I (the case of directiAmal data),

became vt )a(2!' e".1) * (34),+ (P*.) - 2. with equality only

when a aI , and v (pu) a(0, 1) 2 rI) *3 122 r 1 ) - 3 . The followiag

is a onseqeno of Mesk (1972). and elemetary calculus.

Theorem 2.1

(a) for sufficiently large a 0 there mist Unique a V meset to

the condition IP (and i P .0 and ftreei,) 00 Ss sop) of**

permersIn I (ZsaprKOV) * The MMa age the solutions of
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(PK,)CV) -(1t.0)

and W2 60v (:

-1 - ~ -r n-l 2

where W(V)-u "] K X1 nW ea w2 (K)= - Ex ,.
i- i-n i i

Wb (Spectral version) If K a Q DV and v m, .11 ame unique

spectral d mcimpa.itions of 9 and V , where Q gO(n'We), xa0(p-Op)

and D1, DV we respectively ' x a' and (p-1) x (p-1) dagamal

atrices (and trace (De-Dv) -0 if a - p) , then for sufftciently

large n ith probability 1 there e,St =qUe MUGs 0 A, 6K, AV of

Q 0. e giv en by the uniqme etma dsc ,op ..iMS

w1 ~ ~ (r, DV . 2c) .adf a %2~,

We offer no algorithm for tme owulatiom oft and 9. OLven suitable

Initial qPp 0dmtcme %, 00 it should be possible to onstruct an

iterative procemdue, given tractable oerie expa cmias fm T and its

fLst derivatIves (see I*inhm, 1976)t but ansiderable omputational

effort is naecessay.

a m d HudSa (1979, ThemamI W(b) and 4) have obtalnd the

analogue of hean'.2ol for the special case 3(Z,mpZnOV) which ha

psrmieter spae of dimnsion % (p-1) (p+2) provided a (p o We nofe

that 3 (Z,pp, SPOV) is the ifbzm distribution so tr results are

ialid for oqu .rientatioss Ihe log Ukelhood of a seple ftom
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is -n y(In 0V) -a trace V.f* (2.4)

whore , n "* I XOX 1 is pwp ithetrtc, VoLtlvo definite with
L-1LL

pobeL.Lty 1. lfne distinct elemnts of T* , GxcLudad y ym , ate

mamimlly sufficient for V , subJect to v -0 say. A simple large
pp

samle test of umf moty against alternatives (2.4), aijptotically

N equfvalent to the Likelihood ratio statistic, may be obtained by

3gseralisciLq BJghm's Theorem 5.2 (1974, p.1208). We obtain

2heorem 2.2

On the ml hypotheLs of unilority the statistic

% I- (t r (tA) - ,/p) p (p-) (p+2) /2m (p--) is asymptoticaly distributed

m X2 on v(l,p) -(p-l) (p+2) degrees of feedoAn.

Pftoo (A sipler msiom of Theorin 3.2 below).

If r is the (0 1 )-vctoc of the distinct elements of * , then2.
Z*, the asympotlc variance matrix (Mrdia md aatrz., 1977 p.469) of

naliO has rank v(lp) and a generalized inverse (p(p-l) (p+2)/2m(p-m)]

blcdiag M Z ~ BLUM Snc To has "1ll x2p ttO Ip , the

re@ult jllop imdaealy (se also Shatri and ardia., 1977p p.471. for

n altemnstve derivation).

1. % Le undefined een a-p

2. 2 (Zpa•,Vu a p) the othr obvious special ce of (2.2), ts

the niifom distribstion for all a ljulp.

3. A emnral..ation

Cuiosr the fully pmmterimed mltiw ciatem nom modal

(2w) " ' p IA In p etr(-a A(Z-0) 0 (-O) ) (3.1)

- mnd t0e COMditial UitritiOn

i
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etr(-ylIp) ZI - AXeX') (dXl (3.2)

obtained when 3M1 -In  and aw . Here A Ls mpxp syimetric

posLtve definite with distinct eLgenvalues 61 * • ,and y -y(A)

is a norualsing constant. The distribution (3.2)t denoted B(Xl,pA)

is antipodally symtrLc and has paramter Space of dmensLon w (m,p) ,

sino B(XmpA) -(X,,pA A. 1S p ) for all real am im tre c ntrices

A, # and B(X~ppA) -B(XpjpA+AI 1 p+1*pA 2 ) for all real pxp symmetric

matrices AL £2 , where without loss of generality we say asume trace (Al - £2) -0

lmere conveient to identify parameters uniquely we shall assum that

A- ma J,4q) l_, q u, 1-ck,A,1p, satisfies the conditions

a jppq-0 for all J,q, and, if n-p, apk,1p-O for all kA • (3.3)

A randam uample from the distribution (3.2) has log likeliood

-ny (A) -. %n trace AT (3.4)

with T - (yjkpLq) as in (2.3). he distinct elements of T , excluding

thos corresponding to (3.3), are minimally sufficient for A trm

Bark (1972), and differentiation we obtain.

Tho man 3. 1

For sufficiently large a with probebility I there adsts a unique

WEB A of A mbject to (3.3), i&ald is the solution of

--,,,.

As with theorem 2.1, there are --sdeme computational difficulties

associated with the search far . particular, no eULcit Morm of

TA) is oczemtly available.

A ingim statistic for es"ia umifow.t) ageimSt all anftiodLlly

symtric altermatives of the fte= I(ZospA) my be obtained as AbIloes.
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2heorem 3.2

Let ZeY-p" 1 ep and Z2 (Z jkLq) tl(Yjktq yqkj.j Oaths

null hypothesis of unifozrity the statistic

B -n(p-1)E (p+2) trace (ZjZ1) - trace (Z'Z2)] is asymptotically

distributed as X2 on v(m,p) degrees of freedom.

Proof

On the null hypothesis Y has expectation p 1l Zap* Consider first

the cam ncp. The ]lp4*l distinct elmnts of T may be written as a
2

vector
Z = ~ (<Xj> -,•Xn <Y 12 • 314 .008< <Zn..,a > 1

where each -c I'j, !, is a (p l)-vector
-1

(Y4j.,' Yj2,2' " " Y * * Yjppj' ¥J.l,2;}' Y13i' "''" *** p-lopj

and each 21. , I Ij < I < at Is a Ve2-wtc

(yj]. ..' ytjp,pL" y;l#2t# Yj2,l#' ... y*jp-lpgp rjp 1 Usi

Anderson and Stephens (1972, p.616) It follows that n's has oovsziance

matrix Z a (p-i) (P+21 "1 blockdLa( (2CMP SblockdLa(C 2PP 2P ) ))#

10) beloddiav(CppuF - 1 en))

whe.e., n-pe_ " Ism is an sn matrix of ones d D

-a 1a. 7an D + -1
SIDOM C-a C end C =I is a Veneralised inverse of C1 ~.Itor mS- cpp P P
fallows; that

-blokdiag ( (Ni (p-) (p+2) C*.p bloakdia9 (lp 2 (P))

22

Is a eersed ierse of , where[(p ) (

V(ap) and the quadratic f n ZZ redoms to sop as sbove, It

_sme oat n is aoptotickly dstalbuted as an 'j(aP) devrees

- ~ 0 Md bee1E
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The only change ncessary when a -p is that Crn should be

replaced by I (a C7 ). We obtain 3 as above, where now Z has rank
p PP PP

v ,p).

Rearks 1. Mhen pi4, P Is precisely the 'Dingham' statistic
p

obtained by Prentice (1981, (3.4)) from consideration of the (.,2)-th

and (O_,1,1)-tb characters of the Irreducible contLnauous representations of

Sthe rotation gromp 0*(p).

2. When a -1, in the conventional Binghm statistic for

directional data, since then Z2  O and Z, is symmetric.

4. Axial orientation statistics

The dLeibution (3.2) (or (2.2)) ay be specialLsed to give a paramtric

model suitable for X-shapes. We require a probabLity density on O(nop)

invariant under sign changes of any row of the random variable X T This

Is achieved If A satisfies the conditions a OIf jOq. we

wite () (XZatp#3) for the density --
p"  zp-. z a z) (4.1)i-i

where Y -y (3) is a norma lsini constant, 3 Is an wcpxp aray with

ith layer I , J., erk, majk, v Ifk,tIp, and z3is the i-th zw of the

random variable X * ilmo B(in) (Xvapta) as (mW ZX*p.V4*) SW all zal

wcpxp arrays with elements e* a e1 P dependent o laye only, It folloWS

that the distibution (4.1) has parameter pace of dimension

ql(~ap) a - a I(p-l)(p+2)# when acp . if ampp may be of

the mrs goneral form 03+ tu where P. (tu) is pVm "nomerict end

without loss of generality, f -0 . Nence for square axial orientations
p

the parameter spac of the distribition (4.1) has dimenion

I(Pep) ap(P 1 - (901 .P+].,S(pi&2) mq(p-l.p) . iese convenient

to identIt parameters unlqweIyp we shall anss~ that
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a MO for all jl~5j~a, and If a-p, 3 -o also. (4.2)

A random uanple from the distibution (4.1) has log likelihood

-nY CE) -1un trace Z Z Y' (4.3)
- n i-i j J

*where -n . representing the jth row of X

The distinct elements of Tl, .*a, Ta , excluding those corresponding to

(4.2), are minimally sufficient for 2 As in Section 3 we obtain

Theorem 4.1

For sufficiently large n .with probability I there exists, a unique

MRZ of 3 ,subject to (4.2), which is the solution of

An axial. 3ngha statistic, suitable for testing uniformiity against

alterniatives (4.*1) may be obtained from a siuplified verso of Theorrm

3.2. F rom consideration of the asyMtotic null distribution of the

first . '? elements of aAItwe obtain

Theorem 4.2

On the null hypothesis of u~fouuity the statistic

(ax) Z y32) -alp) is asymtotically distributed

as o n V1 (MP) degrees of freedom.

!!~w B. (Theorem 2.2) ua51p(p-1) (p4-2) (trace(( z T )2) -sit/p)m")
Jul

peovided a p.
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r.7 ~5.Hyrd

A parametric model suitable for T-shapes may be obtained from the

generalLsed Khatri-Hardia distribution

etr (-Y (sp) 1m p - LAX XI' +A-j •X') , (5.1)

from (3,1), conditional on XX' -Im , when u2P . We require that the

pdf should be invariant under sign changes of any of the first Ulf

rows (the axes) of X . This can be achieved by requiring that

I ( 2 r) , where s2 i an m2 xp matrix of means, 0 C2m- m  m,
U2

* and that A satisfies the condition ajk,tqO if j OSq and

min(j q) -c a. We write B y ) (Z#u1 9m2 .Pt 2,E.A 2) for the density

exp(-Y- traceC 3 X') +trace(A,1 2 eox 2 , -q A2*(2) o 2)(2 (5.2)
Jul " ° 

°

where y my(3 ZA2 ) is a normalising constant, Z is as in Section 4, but

with onlY Ell layers, A2 is the Vp~ submtrix of A corresponding

to 1(2)* the last =2 rows of the randm vwrabl*e X . Since

hy )  ,np, ,Q, )  iBy) A 4

for all real 3* as in Section 4 (but with only a*I layers). and all

real symetric 3 m2  matrices A3 , it follows that when m3-=1 E2cP

the distribution (5.2) has parameter space of dimension

*(my.) mlhl 1 2 2 m1 2 )+mP- 1'klP .(MV2 P) + a 6p

When a-p # the more general result

Scy) (XFl'2'pFV2,ZA2) . fly) (X,aln 2 ,p, 1
2 ,3 4 *.,A2 + (Al 0 p) + (U32 OF))

obtains, where F and * are of the more general form in Section 4. and

so, the distribution (5.2) has parameter space of dimension

*(ij8 2 P) -1(mi P) + V(i 2 9 p) +u82P I where zi min (Ml 1P 2 l).

Mhre couvniat to identify pamtor, we shall eum thatA

sat es (3.3)v and that

0o fo all 2, 1 j m1, and i " -p, S-O (5.3)
li l | 1 I I I I . . . .. . . . .. . . I II . ..U P I . .
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A random sample from the distrIbution (5.2) has log likelihood

ml

-ny(E,A 2 ) -mn trace( Z E Y ) +n trace(A2 2 SX 2 ) - i y(21) (5.4)

where 1(2) in the m2xp matrix of means of the last m2 rows of the

data matrices X ... Xn * and Y (2) is the m2 p x mp submtrix of Y

corresponding to the last m2 rows. The distinct elements of

SYtl*0. ' Tml* Y(2) excluding those corresponding to (3.3) and

(5.3), are minimally sufficient for 2 and A2

Theorem 5.1

For sufficiently large n , vith probability I there exists a

WX & . (; 2 , 2 ,E) of - (U2 ,A 2 Z3), subject to (3.3) and (5.3) .which

is the solution of

- jkr*q Z2,qk

(-0) Olt

3A-21 "Y2 -  (2)

A large rmple test of unLfmclity of T-shapes against alternatives

(5.2) may be obtained by slight modification of Theorem (3.2) and (4.2).

We obtain a hybrid Rayleigh-Bingham statistics-

Theorsm 5.2

On the null hypothesis of unifociity, the statistic

achy) a a(aX) + (tx)
3 . * *~taoZ with 3 as in Theorem 4.2, and

3 1 mV alp 0 2? t2l2) I?
a as In theom 3.2, Is asymptotically distributed as on

#WO,2',P) dagree of fresdm.
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Proof

X2 has expectation 0p and is asymptotically uncorrelated with
mp

*j ... Y 1 and Y (2 Using the method of Theorem 3.*2 we obtain a

quadratic fozn in m2p + 2 ) + ml (P+' ) variables with covariance

matrix of rank #*(N'm 2 'p) , which reduces to 3 y )  as stated.

6. Exponential models and regression estimators

It is instructive to consider these matrix Bingham and 1Ohatri-Mardia

distributions within the context of the rotationally invariant exponential

family of distributions for orientation statistics, obtained by generalising

Sa's5 (1979) aiponential family for directional data. Provided good

multivariate density estimates are available, the obvious analogues of

earan's regression estiators ((1.10) Ibid.) and goodness of fit tests

(Section 5, ibid.) should be considerably more convenient computationally

than exact ?,ls and likelihood ratio tests.

Consider first the case m ap , and the general exponential model

exp(h(X)- y(h)), h c t0 , where 11 is associated with the

g-th character of the irreducible continuous representations

of 0+(p) , as in Prentice (1981). The von Hies-Fisher

matrix distribution spans ol of dimension p 2 , and has basis

01 a{Xt &1<£,Ji.1 jp) . The gsneralLqed Bingham matrix distribution (3.2)

spans H2- 0,2%,1 ,1 of dimmn v(pIp) when pt_4 # ad am

F:2 *' when r -3 . A basis is provided by

02 - (xlskikt , l5IIIk p, 14 j 1_4p, excluding cases corresponding to (3.3))

When m <p, corresponding results are obtained by excluding the last (p-.)

rows of X. We obtain 12 of dinsion v(mp) with basis

(xijxki, L k c.k , I jj 111p, excluding ases (3))
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For X-shapea, and the distribution (4.2) w proceed similarly. We

obtain (xjjxik, < -cm' r -<<kp, excluding cases corresponding to

(4.2)), of dimension T(m'tp). For hybrids, and the distribution (5.2),

a basis is {je 1 ±el5S~)*(i~k ~i3,1<C

excludig casea corresponding to (5.3)) 0 (xjxk, m1 c i<k -Ca, I < t'Ipp

excluding cases corresponding to (3.3))# of 4ension *(i,. 2 ,P)

Since Beran's results (1979) apply to the canonical exponential

N family of any compact space, his fotmala. (1.10) for estimators, (5.5) for

appro imate tests, and their extwwions to interval estimation# may be used

In large samples an orientation statistics of all types, provided only

that suitable robust multivariate density estimates are available.
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